A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model
نویسندگان
چکیده
Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by (1)H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography-mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level.
منابع مشابه
Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model
The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in r...
متن کاملTop-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model
Gut microbiome-host metabolic interactions affect human health and can be modified by probiotic and prebiotic supplementation. Here, we have assessed the effects of consumption of a combination of probiotics (Lactobacillus paracasei or L. rhamnosus) and two galactosyl-oligosaccharide prebiotics on the symbiotic microbiome-mammalian supersystem using integrative metabolic profiling and modeling ...
متن کاملSystems biology of host–microbe metabolomics
The human gut microbiota performs essential functions for host and well-being, but has also been linked to a variety of disease states, e.g., obesity and type 2 diabetes. The mammalian body fluid and tissue metabolomes are greatly influenced by the microbiota, with many health-relevant metabolites being considered 'mammalian-microbial co-metabolites'. To systematically investigate this complex ...
متن کاملTop-down versus bottom-up—rediscovering physiology via systems biology?
Systems biology is the latest fashion in biology, driven by advances in technology that have provided us with a suite of ‘omics’ techniques providing information or at least data, which is not quite the same thing, but can easily be confused with it at a whole range of levels of biomolecular organisation from genes through proteins to metabolites. The hope is that all of these, when combined in...
متن کاملApplication of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism
Systems biology is a computational field that has been used for several years across different scientific areas of biological research to uncover the complex interactions occurring in living organisms. Applications of systems concepts at the mammalian genome level are quite challenging, and new complimentary computational/experimental techniques are being introduced. Most recent work applying m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Systems Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2007